If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2=3x
We move all terms to the left:
18x^2-(3x)=0
a = 18; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·18·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*18}=\frac{0}{36} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*18}=\frac{6}{36} =1/6 $
| -8b+4=-12 | | (x-2)2^-(x+3)(x+3)=2x+4 | | -31=11+3x | | 9z=8z−10 | | X-2/3=2x/5 | | 5(9-3)=w(9)-5(3) | | 1/4(5x+8)=3-3/4x | | -37=-2x+9 | | (x-2)^2-(x+3)(x+3)=2x+4 | | -6z^2+3z=0 | | 5+5b=5b+2+3 | | -3n-6-6=-8-4n | | 3p^2-3p=13 | | -8c^2-6c=0 | | 6-6n=4-5n | | 2(2+2.5)=x² | | 5v^2-2v-51=0 | | 3x-1=x-6+x | | 4x–9=11x | | 7^(x+1)=3^2x | | 5x-3(2x+5)=5-(x+20) | | 3x2-11x-2=0 | | 3r=2r+2r | | 16b-4=32b+84 | | 11n^2-11n+9=0 | | 6n^2-6n=22 | | b+1=1+b-4 | | 138-x=189 | | 2(x+2)=2.5² | | 2(x+2)=2.5 | | 8-2x=9-x | | 184=-v+36 |